Abstract

We investigate stability of optical solitons in graded-index (GRIN) fibers by solving an effective nonlinear Schrödinger equation that includes spatial self-imaging effects through a length-dependent nonlinear parameter. We show that this equation can be reduced to the standard NLS equation for optical pulses whose dispersion length is much longer than the self-imaging period of the GRIN fiber. Numerical simulations are used to reveal that fundamental GRIN solitons as short as 100fs can form and remain stable over distances exceeding 1km. Higher-order solitons can also form, but they propagate stably over shorter distances. We also discuss the impact of third-order dispersion on a GRIN soliton.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.