Abstract

Planar waveguides are useful to transport, concentrate and distribute light uniformly over large dimensions. Their capacity to collect and gather light efficiently over a large distance is interesting for many applications, like backlighting and solar concentration. For these reasons, the possibility of making them even more efficient could be of considerable interest for the community. The observation of the ray path inside a graded-index (GRIN) fiber inspired the development of a similar technology inside planar waveguides. In this Letter, we show that it has the potential to dramatically increase the efficiency of planar waveguide-based solar concentrators or backlighting using GRIN planar waveguides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.