Abstract

We develop a systematic approach to contact and Jacobi structures on graded supermanifolds. In this framework, contact structures are interpreted as symplectic principal R×-bundles. Gradings compatible with the R×-action lead to the concept of a graded contact manifold, in particular a linear (more generally, n-linear) contact structure. Linear contact structures are proven to be exactly the canonical contact structures on first jets of line bundles. They provide linear Kirillov (or Jacobi) brackets and give rise to the concept of a Kirillov algebroid, an analog of a Lie algebroid, for which the corresponding cohomology operator is represented not by a vector field (de Rham derivative) but by a first-order differential operator. It is shown that one can view Kirillov or Jacobi brackets as homological Hamiltonians on linear contact manifolds. Contact manifolds of degree 2, as well as contact analogs of Courant algebroids are studied. We define lifting procedures that provide us with constructions of canonical examples of the structures in question.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call