Abstract

In this paper, we prove that Graded Calabi Yau algebras of dimension 3 are isomorphic to path algebras of quivers with relations derived from a superpotential. We show that for a given quiver Q and a degree d , the set of good superpotentials of degree d , i.e. those that give rise to Calabi Yau algebras, is either empty or almost everything (in the measure theoretic sense). We also give some constraints on the structure of quivers that allow good superpotentials, and for the simplest quivers we give a complete list of the degrees for which good superpotentials exist.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.