Abstract

We introduce the concept of a graded bundle which is a natural generalization of the concept of a vector bundle and whose standard examples are higher tangent bundles T n Q playing a fundamental role in higher order Lagrangian formalisms. Graded bundles are graded manifolds in the sense that we can choose an atlas whose local coordinates are homogeneous functions of degrees 0 , 1 , … , n . We prove that graded bundles have a convenient equivalent description as homogeneity structures, i.e. manifolds with a smooth action of the multiplicative monoid ( R ≥ 0 , ⋅ ) of non-negative reals. The main result states that each homogeneity structure admits an atlas whose local coordinates are homogeneous. Considering a natural compatibility condition of homogeneity structures we formulate, in turn, the concept of a double ( r - tuple, in general) graded bundle–a broad generalization of the concept of a double ( r -tuple) vector bundle. Double graded bundles are proven to be locally trivial in the sense that we can find local coordinates which are simultaneously homogeneous with respect to both homogeneity structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.