Abstract
Signals emitted from the prospective dorsal marginal zone (the organizer) are thought to specify neuroectodermal cell fates along the anteroposterior (AP) axis, but the mechanisms underlying this signaling event remain to be elucidated. To assess the effect of Xenopus Dishevelled (Xdsh), a proposed component of the Wnt, Notch and Frizzled signal transduction pathways, on AP axis determination, it was supplied in varying doses to presumptive ectodermal cells. Two-fold increments in levels of microinjected Xdsh mRNA revealed a gradual shift in cell fates along the AP axis. Lower doses of Xdsh mRNA activated anterior neuroectodermal markers, XAG1 and Xotx2, whereas the higher doses induced more posterior neural tissue markers such as En2, Krox20 and HoxB9. At the highest dose of Xdsh mRNA, explants contained maximal amount of HoxB9 transcripts and developed notochord and somites. When compared with Xdsh, Xwnt8 mRNA also activated anterior neuroectodermal markers, but failed to elicit mesoderm formation. Analysis of explants overexpressing Xdsh at the gastrula stage revealed activation of several organizer-specific genes which have been implicated in determination of neural tissue (Xotx2, noggin, chordin and follistatin). Whereas Goosecoid, Xlim1 and Xwnt8 were not induced in these explants, another early marginal zone marker, Xbra, was activated at the highest level of Xdsh mRNA. These observations suggest that the effects of Xdsh on AP axis specification may be mediated by combinatorial action of several early patterning genes. Increasing levels of Xdsh mRNA activate posterior markers, whereas increasing amounts of the organizer stimulate the extent of anterior development (Stewart, R.M. and Gerhart, J.C. (1990) Development 109, 363–372). These findings argue against induction of the entire organizer by Xdsh in ectodermal cells and implicate signal transduction pathways involving Xdsh in AP axis determination. Thus, different levels of a single molecule, Xdsh, can specify distinct cell states along the AP axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.