Abstract
Let [Formula: see text] be a field of characteristic 0 and let [Formula: see text]. The algebra [Formula: see text] admits a natural grading [Formula: see text] by the cyclic group [Formula: see text] of order 2. In this paper, we describe the [Formula: see text]-graded A-identities for [Formula: see text]. Recall that an A-identity for an algebra is a multilinear polynomial identity for that algebra which is a linear combination of the monomials [Formula: see text] where [Formula: see text] runs over all even permutations of [Formula: see text] that is [Formula: see text], the [Formula: see text]th alternating group. We first introduce the notion of an A-identity in the case of graded polynomials, then we describe the graded A-identities for [Formula: see text], and finally we compute the corresponding graded A-codimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.