Abstract
The replacement of small cations with bulkier organic cations containing long alkyl chains or benzene rings to form a thin two-dimensional (2D) perovskite passivation layer on three-dimensional (3D) perovskite (2D/3D) has become a promising strategy for improving both the efficiency and stability of perovskite solar cells (PSCs). The 2D layer defines the interfacial chemistry and physics at the 2D/3D bilayer and endows the 2D/3D structure with better chemical and thermal stability. Herein, 2D/3D (CF3-PEA)2FA0.85MA0.15Pb2I7/FA0.85MA0.15PbI3 planar heterojunction perovskite was produced using a facile interfacial ion exchange process. The 2D (CF3-PEA)2FA0.85MA0.15Pb2I7 capping layer can not only passivate the FA0.85MA0.15PbI3 film but also act as super-hydrophobic layer to inhibit water diffusion and significantly enhance the stability. The 2D capping layer can also establish a unique graded band structure at the perovskite/Spiro-OMeTAD interface and lead to p-type doping for Spiro-OMeTAD layer which is beneficial for efficient charge transport. Optimized PSCs based on this 2D/3D heterojunction yield a champion power conversion efficiency (PCE) of 23.1% and improved stability. The device maintains 84% output for 2400 h aging under ambient environmental conditions without encapsulation, and maintains 81% for 200 h under illumination with encapsulation. This work will inspire the design of more fluorinated 2D perovskite interfaces for advanced photovoltaics and beyond.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.