Abstract

In today’s wireless Heterogeneous Networks (HetNets) deployments, the physical resources which are supposed to handle the huge mobile data requests, are clustered statically by the operators, leading an ineffective resource management. In this paper, we solve this ineffective static resource assignment, by proposing a novel queueing-theoretic Software Defined HetNet (SDHetN) model which orchestrates the HetNets topology using adaptive and scalable flow management heuristics. The proposed SDHetN takes its flexible and scalable characteristics thanks to two algorithms; the Topology Control Algorithm (TCA) and the Flow Admission Control Algorithm (FACA). Specifically, the proposed TCA clusters several OpenFlow (OF) switches using the flows’ Grade of Service (GoS) in order to optimize physical resource assignment. The proposed FACA fairly distributes each Flow Authority Virtual Switch (FAVS) that are created in TCA by grouping several switches virtually. We also propose a thread-based parallelization in TCA and FACA increasing the response time and service rate of the SDN Controller. The performance of SDHetN is evaluated by 48 different scenarios and it is shown that SDHetN provides a scalable and fair flow management according to different performance metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call