Abstract

The World Health Organization (WHO) grade diagnosis of cancer is essential for surgical outcomes and patient treatment. Traditional pathological grading diagnosis depends on dyes or other histological approaches, and the result interpretation highly relies on the pathologists, making the process time-consuming (>60 min, including the steps of dewaxing to water and H&E staining), resource-wasting, and labor-intensive. In the present study, we report an alternative workflow that combines the Fourier transform infrared (FTIR) microscopy and artificial neural network (ANN) to diagnose the grade of human glioma in a way that is faster (~20 min, including the processes of sample dewaxing, spectra acquisition and analysis), accurate (the prediction accuracy, specificity and sensitivity can reach above 99%), and without reagent. Moreover, this method is much superior to the common classification method of principal component analysis-linear discriminate analysis (PCA-LDA) (the prediction accuracy, specificity and sensitivity are only 87%, 89% and 86%, respectively). The ANN mainly learned the characteristic region of 800–1800 cm−1 to classify the major histopathologic classes of human glioma. These results demonstrate that the grade diagnosis of human glioma by FTIR microscopy plus ANN can be streamlined, and could serve as a complementary pathway that is independent of the traditional pathology laboratory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call