Abstract

We measure chemical abundance ratios and radial velocities in four massive (i.e., young) [alpha/Fe]-rich red giant stars using high-resolution high-S/N spectra from ESPaDOnS fed by Gemini-GRACES. Our differential analysis ensures that our chemical abundances are on the same scale as the Alves-Brito et al. (2010) study of bulge, thin and thick disk red giants. We confirm that the program stars have enhanced [alpha/Fe] ratios and are slightly metal poor. Aside from lithium enrichment in one object, the program stars exhibit no chemical abundance anomalies when compared to giant stars of similar metallicity throughout the Galaxy. This includes the elements Li, O, Si, Ca, Ti, Cr, Ni, Cu, Ba, La, and Eu. Therefore, there are no obvious chemical signatures that can help to reveal the origin of these unusual stars. While our new observations show that only one star (not the Li-rich object) exhibits a radial velocity variation, simulations indicate that we cannot exclude the possibility that all four could be binaries. In addition, we find that two (possibly three) stars show evidence for an infrared excess, indicative of a debris disk. This is consistent with these young [alpha/Fe]-rich stars being evolved blue stragglers, suggesting their apparent young age is a consequence of a merger or mass transfer. We would expect a binary fraction of ~50% or greater for the entire sample of these stars, but the signs of the circumbinary disk may have been lost since these features can have short timescales. Radial velocity monitoring is needed to confirm the blue straggler origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.