Abstract
Among image segmentation algorithms there are two major groups: (a) methods assuming known appearance models and (b) methods estimating appearance models jointly with segmentation. Typically, the first group optimizes appearance log-likelihoods in combination with some spacial regularization. This problem is relatively simple and many methods guarantee globally optimal results. The second group treats model parameters as additional variables transforming simple segmentation energies into high-order NP-hard functionals (Zhu-Yuille, Chan-Vese, Grab Cut, etc). It is known that such methods indirectly minimize the appearance overlap between the segments. We propose a new energy term explicitly measuring L1 distance between the object and background appearance models that can be globally maximized in one graph cut. We show that in many applications our simple term makes NP-hard segmentation functionals unnecessary. Our one cut algorithm effectively replaces approximate iterative optimization techniques based on block coordinate descent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.