Abstract

Background: The late-onset cerebellar ataxias (LOCAs) have until recently resisted molecular diagnosis. Contributing to this diagnostic gap is that non-coding structural variations, such as repeat expansions, are not fully accessible to standard short-read sequencing analysis. Methods: We combined bioinformatics analysis of whole-genome sequencing and long-read sequencing to search for repeat expansions in patients with LOCA. We enrolled 66 French-Canadian, 228 German, 20 Australian and 31 Indian patients. Pathogenic mechanisms were studied in post-mortem cerebellum and induced pluripotent stem cell (iPSC)-derived motor neurons from 2 patients. Results: We identified 128 patients who carried an autosomal dominant GAA repeat expansion in the first intron of the FGF14 gene. The expansion was present in 61%, 18%, 15% and 10% of patients in the French-Canadian, German, Australian and Indian cohorts, respectively. The pathogenic threshold was determined to be (GAA)≥250, although incomplete penetrance was observed in the (GAA)250-300 range. Patients developed a slowly progressive cerebellar syndrome at an average age of 59 years. Patient-derived post-mortem cerebellum and induced motor neurons both showed reduction in FGF14 RNA and protein expression compared to controls. Conclusions: This intronic, dominantly inherited GAA repeat expansion in FGF14 represents one of the most common genetic causes of LOCA uncovered to date.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call