Abstract

Azithromycin is considered an effective drug to treat the perinatal mycoplasma infection. However, there is a lack of studies on developmental toxicity of azithromycin. In this study, we observed the developmental toxicity of fetal liver induced by prenatal azithromycin exposure (PAE) in mice and explored the potential mechanism. Pregnant Kunming mice were intraperitoneally injected with azithromycin (37.5 and 150 mg/kg·d) from gestational day (GD) 9 to 18. After PAE, the bodyweight gain rates of pregnant mice and the birthweights of the offspring were decreased, and the liver morphology, development indexes and metabolic function were all altered in different degree in the PAE fetuses. Meanwhile, PAE decreased the fetal serum insulin-like growth factor 1 (IGF1) levels and liver IGF1 signal pathway expression, accompanied by glucocorticoid receptor-CCAAT enhancer-binding protein α (GR-C/EBPα) signal enhancement. Furthermore, azithromycin disturbed hepatocyte differentiation, maturation and metabolic function via upregulating GR-C/EBPα signal and reducing the expression and secretion levels of IGF1 in HepG2 cells. These changes could be reversed by GR siRNA or exogenous IGF1. These results indicated that PAE could cause fetal liver developmental toxicity in mice, and one of the main mechanisms was that azithromycin activated the GR-C/EBPα signal, inhibited the IGF1 signal pathway, and then disturbed the hepatic proliferation, apoptosis, differentiation, and glycose and lipid metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.