Abstract

SummaryG-quadruplex structures are associated with various biological activities, while in vivo evidence is essential to confirm the formation of G-quadruplexes inside cells. Most conventional agents that recognize G-quadruplex, including antibodies and small-molecule G-quadruplex ligands, either stabilize the G-quadruplex or prevent G-quadruplex unfolding by helicase, thereby artificially increasing the G-quadruplex levels in cells. Unambiguous study of G-quadruplexes at natural cellular levels requires agents that do not enhance the stability of G-quadruplex. Herein, we report the first example of nonperturbative chemical nucleases that do not influence the stability of G-quadruplex telomeric DNA but can selectively cleave G-quadruplex DNA over duplex DNA. These chemical nucleases can be readily taken up by cells and promote selective cleavage of telomeric DNA with low levels of nonselective DNA cleavage of other regions of the genome. The cleavage of G-quadruplex telomeric DNA by nonperturbative chemical nucleases confirms the formation of G-quadruplex telomeric DNA in live cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.