Abstract

BackgroundVessels heal after injury and G protein–coupled receptors are involved in the vascular smooth muscle cell proliferation required to form intimal hyperplasia. We have previously identified the role of Gαq in vascular smooth muscle cell proliferation in vitro. This study now examines the role of Gαq in the developing intimal hyperplasia in a murine model and the impact of disruption of Gαq signaling on intimal hyperplasia development. MethodsWe employed a murine femoral wire injury model in which a micro-wire is passed through a branch of the femoral artery and used to denude the common femoral artery. We perfusion-fixed specimens and stained sections with hematoxylin-eosin and Movat's stains such that morphometric analysis could be performed using an Image-Pro system. We also harvested additional specimens of femoral artery and snap-froze them for Western blotting or zymography, to allow for the study of G protein expression and both protease expression and activity. We used contralateral vessels as controls. We immersed additional vessels in pluronic gel containing the chemical Gαq G protein inhibitors GP-2A, siRNA to Gαq or adenovirus containing mutant inactive Gαq. ResultsGαq expression increased in a time-dependent manner after femoral artery injury. Sham-operated vessels did not produce such a response. Inhibition of Gαq reduced cell proliferation without affecting cell migration. Interruption of Gαq signaling also inhibited the development of intimal hyperplasia. Inhibition of Gαq did not alter peak urinary-type plasminogen activator activity and expression, but did increase early plasminogen activator inhibitor-1 activity and expression. Inhibition of Gαq reduced peak metalloproteinase (MMP)-9 activity at Day 3 but did not influence peak MMP-2 activity at Day 7. Protein expression for MMP-9 was also decreased, but that of MMP-2 was not affected. There were no changes in the expression or the activity of the respective inhibitors for MMP-9 and MMP-2, and tissue inhibitor of metalloproteinases-1 and -2. ConclusionsThese data demonstrate that femoral wire injury in the mouse is associated with a time-dependent increase in Gαq expression. Inhibition of Gαq alters cell proliferation and is associated with decreased MMP-9 expression and activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call