Abstract

Many scientific codes consist of memory bandwidth bound kernels — the dominating factor of the runtime is the speed at which data can be loaded from memory into the Arithmetic Logic Units, before results are written back to memory. One major advantage of many-core devices such as General Purpose Graphics Processing Units (GPGPUs) and the Intel Xeon Phi is their focus on providing increased memory bandwidth over traditional CPU architectures. However, as with CPUs, this peak memory bandwidth is usually unachievable in practice and so benchmarks are required to measure a practical upper bound on expected performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.