Abstract

The Image Source Method (ISM) is one of the most employed techniques to calculate acoustic Room Impulse Responses (RIRs), however, its computational complexity grows fast with the reverberation time of the room and its computation time can be prohibitive for some applications where a huge number of RIRs are needed. In this paper, we present a new implementation that dramatically improves the computation speed of the ISM by using Graphic Processing Units (GPUs) to parallelize both the simulation of multiple RIRs and the computation of the images inside each RIR. Additional speedups were achieved by exploiting the mixed precision capabilities of the newer GPUs and by using lookup tables. We provide a Python library under GNU license that can be easily used without any knowledge about GPU programming and we show that it is about 100 times faster than other state of the art CPU libraries. It may become a powerful tool for many applications that need to perform a large number of acoustic simulations, such as training machine learning systems for audio signal processing, or for real-time room acoustics simulations for immersive multimedia systems, such as augmented or virtual reality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.