Abstract

PU hardware is becoming increasingly general purpose, quickly outgrowing the traditional but constrained GPU-as-coprocessor programming model. To make GPUs easier to program and easier to integrate with existing systems, we propose making the host's file system directly accessible from GPU code. GPUfs provides a POSIX-like API for GPU programs, exploits GPU parallelism for efficiency, and optimizes GPU file access by extending the buffer cache into GPU memory. Our experiments, based on a set of real benchmarks adopted to use our file system, demonstrate the feasibility and benefits of our approach. For example, we demonstrate a simple self-contained GPU program which searches for a set of strings in the entire tree of Linux kernel source files over seven times faster than an eight-core CPU run.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.