Abstract
Dental bone drilling is an inexact and often a blind art. Dentist risks damaging the invisible tooth roots, nerves and critical dental structures like mandibular canal and maxillary sinus. This paper presents a haptics-based jawbone drilling simulator for novice surgeons. Through the real-time training of tactile sensations based on patient-specific data, improved outcomes and faster procedures can be provided. Previously developed drilling simulators usually adopt penalty-based contact force models and often consider only spherical-shaped drill bits for simplicity and computational efficiency. In contrast, our simulator is equipped with a more precise force model, adapted from the Voxmap-PointShell (VPS) method to capture the essential features of the drilling procedure. In addition, the proposed force model can accommodate various shapes of drill bits. To achieve better anatomical accuracy, our oral model has been reconstructed from Cone Beam CT, using voxel-based method. To enhance the real-time response, the parallel computing power of Graphics Processing Units is exploited through extra efforts for data structure design, algorithms parallelization, and graphic memory utilization. Preliminary results show that the developed system can produce appropriate force feedback at different tissue layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.