Abstract

High performance computing clusters that are augmented with cost and power efficient graphics processing unit (GPU) provide new opportunities to broaden the use of large-eddy simulation technique to study high Reynolds number turbulent flows in fluids engineering applications. In this paper, we extend our earlier work on multi-GPU acceleration of an incompressible Navier-Stokes solver to include a large-eddy simulation (LES) capability. In particular, we implement the Lagrangian dynamic subgrid scale model and compare our results against existing direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 180. Overall, our LES results match fairly well with the DNS data. Our results show that the Reτ = 180 case can be entirely simulated on a single GPU, whereas higher Reynolds cases can benefit from a GPU cluster.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.