Abstract

High performance computing clusters that are augmented with cost and power efficient graphics processing unit (GPU) provide new opportunities to broaden the use of large-eddy simulation technique to study high Reynolds number turbulent flows in fluids engineering applications. In this paper, we extend our earlier work on multi-GPU acceleration of an incompressible Navier-Stokes solver to include a large-eddy simulation (LES) capability. In particular, we implement the Lagrangian dynamic subgrid scale model and compare our results against existing direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 180. Overall, our LES results match fairly well with the DNS data. Our results show that the Reτ = 180 case can be entirely simulated on a single GPU, whereas higher Reynolds cases can benefit from a GPU cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call