Abstract

High-quality data are of utmost importance for any deep-learning application. However, acquiring such data and their annotation is challenging. This paper presents a GPU-accelerated simulator that enables the generation of high-quality, perfectly labelled data for any Time-of-Flight sensor, including LiDAR. Our approach optimally exploits the 3D graphics pipeline of the GPU, significantly decreasing data generation time while preserving compatibility with all real-time rendering engines. The presented algorithms are generic and allow users to perfectly mimic the unique sampling pattern of any such sensor. To validate our simulator, two neural networks are trained for denoising and semantic segmentation. To bridge the gap between reality and simulation, a novel loss function is introduced that requires only a small set of partially annotated real data. It enables the learning of classes for which no labels are provided in the real data, hence dramatically reducing annotation efforts. With this work, we hope to provide means for alleviating the data acquisition problem that is pertinent to deep-learning applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.