Abstract

A software-based approach to achieve high performance within a power budget often involves dynamic voltage and frequency scaling (DVFS). Thus, accurately predicting the power consumption of an application at different DVFS levels (or more generally, different processor configurations) is paramount for the energy-efficient functioning of a high-performance computing (HPC) system. The increasing prevalence of graphics processing units (GPUs) in HPC systems presents new challenges in power management, and machine learning presents an unique way to improve the software-based power management of these systems. As such, we explore the problem of GPU power prediction at different DVFS states via machine learning. Specifically, we propose a new ensemble technique that incorporates three machine-learning techniques --- sequential minimal optimization regression, simple linear regression, and decision tree --- to reduce the mean absolute error (MAE) to 3.5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call