Abstract

Based on the corrected finite pointset method (CFPM) with CPU-GPU heteroid parallelization (CFPM-GPU), a high-efficiency, accurate and fast parallel algorithm was developed for the high-dimensional phase separation phenomena governed by the multi-component Cahn-Hilliard (C-H) equation in complex domains. The proposed parallel algorithm with the CFPM-GPU was built in a process like: ① introduce the Wendland weight function into the discretization of the finite pointset method (FPM) scheme for the 1st/2nd spatial derivatives, based on the Taylor series and the weighted least square concept; ② use the above FPM scheme twice to approximate the 4th spatial derivative in the C-H equation, which is called the CFPM method; ③ for the first time establish an accelerating parallel algorithm for the CFPM with local matrices by means of a single GPU card based on the CUDA programming. Two benchmark problems of 2D radially and 3D spherically symmetric C-H equations were first solved to test the accuracy and high-efficiency of the proposed CFPM-GPU, and the acceleration ratio of the GPU parallelization to the single CPU computation is about 160. Subsequently, the proposed CFPM-GPU was used to predict the 2D/3D multi-phase separation phenomena in complex domains, and the prediction was compared with other numerical results. The numerical results show that, the proposed CFPM-GPU is valid and high-efficiency to simulate the 2D/3D multi-phase separation cases in complex domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.