Abstract

AbstractPoints, lines, and polygons have been the fundamental primitives in graphics. Graphics hardware is optimized to handle them in a pipeline. Other objects are converted to these primitives before rendering. Programmable GPUs have made it possible to introduce a wide class of computations on each vertex and on each fragment. In this paper, we outline a procedure to accurately draw high-level procedural elements efficiently using the GPU. The CPU and the vertex shader setup the drawing area on screen and pass the required parameters. The pixel shader uses ray-casting to compute the 3D point that projects to it and shades it using a general shading model. We demonstrate the fast rendering of 2D and 3D primitives like circle, conic, triangle, sphere, quadric, box, etc., with a combination of specularity, refraction, and environment mapping. We also show combination of objects, like Constructive Solid Geometry (CSG) objects, can be rendered fast on the GPU. We believe customized GPU programs for a new set of high-level primitives – which we call GPU Objects – is a way to exploit the power of GPUs and to provide interactive rendering of scenes otherwise considered too complex.KeywordsAcceptance TestGraphic HardwareEnvironment MappingGraphic Processor UnitCamera CenterThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.