Abstract

Traditional tools, such as 3D Slicer, Fiji, and MATLAB®, often encounter limitations in rendering performance and data management as the dataset sizes increase. This work presents a GPU-enabled volume renderer with a MATLAB® interface that addresses these issues. The proposed renderer uses flexible memory management and leverages the GPU texture-mapping features of NVIDIA devices. It transfers data between the CPU and the GPU only in the case of a data change between renderings, and uses texture memory to make use of specific hardware benefits of the GPU and improve the quality. A case study using the ViBE-Z zebrafish larval dataset demonstrated the renderer’s ability to produce visualizations while managing extensive data effectively within the MATLAB® environment. The renderer is available as open-source software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.