Abstract
It has been shown that the sparse grid combination technique can be a practical tool to solve high dimensional PDEs arising in multidimensional option pricing problems in finance. Hierarchical approximation of these problems leads to linear systems that are smaller in size compared to those arising from standard finite element or finite difference discretizations. However, these systems are still excessively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address iterative solutions via preconditioned Krylov subspace based methods, such as Stabilized BiConjugate Gradient (BiCGStab) and CG Squared (CGS), with the main focus on the design of such iterative solvers to harness massive parallelism of general purpose Graphics Processing Units (GPGPU)s. We discuss data structures and efficient implementation of iterative solvers. We also present a number of performance results to demonstrate the scalability of these solvers on the NVIDIA's CUDA platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.