Abstract
ABSTRACT Optimization of large-scale frame structures consumes a vast amount of time since the analysis of such complex systems contains several iterative processes. Mitigating computational burden and reducing this time to a reasonable level is possible by running GPU (Graphical Processing Unit) processors, which can be found on standard computers. This study presents an algorithm for the acceleration of size optimization of steel frames by using the BBO (Biogeography-Based Optimization) method that is suitable for GPU architecture. The GPU-based parallel algorithm, designed for FEM (Finite Element Method) analysis, is applied to three hypothetical steel-frame case structures with different numbers of members and nodes; and processed on four different computers which are available on the market. The presented case studies revealed that the proposed solution’s efficiency increases as the number of members increases and confirmed the ability of the acceleration algorithm for optimization of large-scale frame structures and provided time efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Asian Architecture and Building Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.