Abstract

Heterogeneity in the cell population of cancer tissues poses many challenges in cancer diagnosis and treatment. Studying the heterogeneity in cell populations from gene expression measurement data in the context of cancer research is a problem of paramount importance. In addition, reducing the computation time of the algorithms that deal with high volumes of data has its obvious merits. Parallelizable models using Markov chain Monte Carlo methods are typically slow. This article presents a novel, computationally efficient, and parallelizable model to analyze heterogeneity in cancer tissues using GPUs. Because our model is parallelizable, the input data size does not affect the computation time much, provided the hardware resources are not exhausted. Our model uses qPCR (quantitative polymerase chain reaction) gene expression measurements to study heterogeneity in cancer tissue. We compute the cell proportion breakup by accelerating variational methods on a GPU. We test this model on synthetic and real-world gene expression data collected from fibroblasts and compare the performance of our algorithm with those of Markov chain Monte Carlo and expectation maximization. Our new model is computationally less complex and faster than existing Bayesian models for estimating cancer tissue heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.