Abstract

A hierarchical fast parallel co-evolutionary immune particle swarm optimization (PSO) algorithm, accelerated by graphics processing unit (GPU) technique (G-PCIPSO), is proposed for multiparameter identification and temperature monitoring of permanent magnet synchronous machines (PMSM). It is composed of two levels and is developed based on compute unified device architecture (CUDA). In G-PCIPSO, the antibodies (Abs) of higher level memory are selected from the lower level swarms and improved by immune clonal-selection operator. The search information exchanges between swarms using the memory-based sharing mechanism. Moreover, an immune vaccine-enhanced operator is proposed to lead the ${P}$ bests particles to unexplored areas. Optimized parallel implementations of G-PCIPSO algorithm is developed on GPU using CUDA, which significantly speeds up the search process. Finally, the proposed algorithm is applied to multiple parameters identification and temperature monitoring of PMSM. It can track parameter variation and achieve temperature monitoring online effectively. Compared with a CPU-based serial execution, the computational efficiency is greatly enhanced by GPU-accelerated parallel computing technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call