Abstract

In this paper, we develop a novel Graphics Processing Unit (GPU)-based high-performance Radiative Transfer Model (RTM) for the Infrared Atmospheric Sounding Interferometer (IASI) launched in 2006 onboard the first European meteorological polar-orbiting satellites, METOP-A. The proposed GPU RTM processes more than one profile at a time in order to gain a significant speedup compared to the case of processing just one profile at a time. The radiative transfer model performance in operational numerical weather prediction systems nowadays still limits the number of channels they can use in hyperspectral sounders to only a few hundreds. To take the full advantage of such high resolution infrared observations, a computationally efficient radiative transfer model is needed. Our GPU-based IASI radiative transfer model is developed to run on a low-cost personal supercomputer with 4 NVIDIA Tesla C1060 GPUs with total 960 cores, delivering near 4 TFlops theoretical peak performance. The model exhibited linear scaling with the number of graphics processing units. Computing 10 IASI radiance spectra simultaneously on a GPU, we reached 763x speedup for 1 GPU and 3024x speedup for all 4 GPUs, both with respect to the original single-threaded Fortran CPU code. The significant 3024x speedup means that the proposed GPU-based high-performance forward model is able to compute one day's amount of 1,296,000 IASI spectra within 6 minutes, whereas the original CPU-based version will impractically take more than 10 days. The GPU-based high-performance IASI radiative transfer model is suitable for the assimilation of the IASI radiance observations into the operational numerical weather forecast model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call