Abstract

Up to now, state-of-the-art empirical slant delay modeling for processing observations from radio space geodetic techniques has been provided by a combination of two empirical models. These are GPT (Global Pressure and Temperature) and GMF (Global Mapping Function), both operating on the basis of long-term averages of surface values from numerical weather models. Weaknesses in GPT/GMF, specifically their limited spatial and temporal variability, are largely eradicated by a new, combined model GPT2, which provides pressure, temperature, lapse rate, water vapor pressure, and mapping function coefficients at any site, resting upon a global 5° grid of mean values, annual, and semi-annual variations in all parameters. Built on ERA-Interim data, GPT2 brings forth improved empirical slant delays for geophysical studies. Compared to GPT/GMF, GPT2 yields a 40% reduction of annual and semi-annual amplitude differences in station heights with respect to a solution based on instantaneous local pressure values and the Vienna mapping functions 1, as shown with a series of global VLBI (Very Long Baseline Interferometry) solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.