Abstract

Generative Pre-trained Transformers (GPT) and Large language models (LLMs) have made significant advancements in natural language processing in recent years. The practical applications of LLMs are undeniable, rendering moot any debate about their impending influence. The power of LLMs has made them similar to machine learning models for decision-making problems. In this paper, we focus on binary classification which is a common use of ML models, particularly in credit lending applications. We show how a GPT model can perform almost as accurately as a classical logistic machine learning model but with a much lower number of sample observations. In particular, we show how, in the context of credit lending, LLMs can be improved and reach performances similar to classical logistic regression models using only a small set of examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.