Abstract

The combination of space-geodetic techniques is considered as an important tool for improving the accuracy and consistency of the resulting geodetic products. For GNSS satellites, tracking data is regularly collected by both the microwave and the SLR observation technique. In this study, we investigate the impact of combined analysis of microwave and SLR observations on precise orbit determination of GNSS satellites. Combined orbits are generated for the two GPS satellites equipped with Laser retroreflector arrays and for three GLONASS satellites that are currently observed by the 1LRS network. The combination is done at the observation level, implying that all parameters common to both techniques are derived from both observation types. Several experimental orbits are determined using different observation weights. As the well-known 5 cm-bias between SLR measurements and GPS microwave orbits is unexplained, SLR range biases as well as satellite retroreflector offsets are estimated in addition to the orbital parameters. The different orbit solutions are then compared in order to determine whether and to which extent the SLR measurements influence a microwave orbit primarily derived from microwave observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.