Abstract

Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15–30 mm/yr toward the southwest and strain values up to 0.28–8.23×10−8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity.

Highlights

  • Anatolia is one of the most seismically active regions of the Mediterranean basin

  • The aim of this study is to reveal the updated kinematics related with strain rates, and deformations of the region

  • The velocity field indicates counterclockwise rotation for the study area according to a Eurasia-fixed stabilization

Read more

Summary

Introduction

Anatolia is one of the most seismically active regions of the Mediterranean basin. Historical seismicity, as well as instrumental recordings of earthquakes occurred in the last 10 years, reveals the active tectonic features of this area. The North Anatolian, East Anatolian, Aegean, and Burdur-Fethiye fault zones, point to the tectonic diversity and activity of Anatolia. In the eastern Mediterranean, previous GPS studies have helped quantify large-scale plate motions [3,4], regional deformation in the zone of plate interaction [5,6,7], and deformations associated with the earthquake cycle [8]. GPS studies conducted in recent years have demonstrated the presence of a recent NE-SW extension in Western Anatolia, which moves at about 30 mm/year towards the southwest [7]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call