Abstract

A reduced dynamic filtering strategy that exploits the unique geometric strength of the Global Positioning System(GPS) to minimize the effects of force model errors has yielded orbit solutions for TOPEX/POSEIDON which appear accurate to better than 3 cm (1 σ) in the radial component. Reduction of force model error also reduces the geographic correlation of the orbit error. With a traditional dynamic approach, GPS yields radial orbit accuracies of 4–5 cm, comparable to the accuracy delivered by satellite laser ranging and the Doppler orbitography and radio positioning integrated by satellite (DORIS) tracking system. A portion of the dynamic orbit error is in the Joint Gravity Model‐2 (JGM‐2); GPS data from TOPEX/POSEIDON can readily reveal that error and have been used to improve the gravity model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.