Abstract
<h3>Abstract</h3> The need to successfully navigate in the absence of GNSS has grown in recent years. In particular, light aircraft such as UAVs are growing in popularity for a variety of applications vulnerable to GPS denial. The research presented here develops a GPS-denied navigation scheme for light aircraft employing images formed from a synthetic aperture radar system. Past research has explored the utility of radar telemetry in GPS-denied systems. This research advances previous work by exploiting radar images to obtain range and cross-range position measurements. Images are formed using the Range-Doppler Algorithm, an efficient image formation algorithm ideal for the sometimes limited processing packages available to light aircraft. An inertial navigation and radar processing system is implemented using both real and simulated radar images to aid in estimating an aircraft’s state in a GPS-denied environment. The results show that navigation in the absence of GPS using synthetic aperture radar is feasible with converging and bounded estimation errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: NAVIGATION: Journal of the Institute of Navigation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.