Abstract

We use continuous and campaign measurements from 215 GPS sites in northern Central America and southern Mexico to estimate coseismic and afterslip solutions for the 2009 M w = 7.3 Swan Islands fault strike-slip earthquake and the 2012 M w = 7.3 El Salvador and M w = 7.4 Guatemala thrust-faulting earthquakes on the Middle America trench. Our simultaneous , time-dependent inversion of more than 350 000 daily GPS site positions gives the first jointly consistent estimates of the coseismic slips for all three earthquakes, their combined time-dependent post-seismic effects and secular station velocities corrected for both the co-seismic and post-seismic deformation. Our geodetic slip solutions for all three earthquakes agree with previous estimates that were derived via static coseismic-offset modelling. Our time-dependent model, which attributes all transient post-seismic deformation to earthquake afterslip, fits nearly all of the continuous GPS site position time-series within their several-millimetre position noise. Afterslip moments for the three earthquakes range from 35 to 140 per cent of the geodetic coseismic moments, with the largest afterslip estimated for the 2012 El Salvador earthquake along the weakly coupled El Salvador trench segment. Forward modelling of viscoelastic deformation triggered by all three earthquakes for a range of assumed mantle and lower crustal viscosities suggests that it accounts for under 20 per cent of the observed post-seismic deformation and possibly under 10 per cent. Our results thus point to afterslip as the primary and perhaps dominant mode of post-seismic deformation for these C The Author(s)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call