Abstract

G-protein coupled receptors (GPCRs), the largest family of human membrane proteins, mediate cellular signaling and represent primary targets of about one third of currently marketed drugs. GPCRs undergo highly dynamic structural transitions during signal transduction, from binding of extracellular ligands to coupling with intracellular effector proteins. Molecular dynamics (MD) simulations have been utilized to investigate GPCR signaling mechanisms (such as pathways of ligand binding and receptor activation/deactivation) and to design novel small-molecule drug candidates. Future research directions point towards modeling cooperative binding of multiple orthosteric and allosteric ligands to GPCRs, GPCR oligomerization and interactions of GPCRs with different intracellular signaling proteins. Through methodological and supercomputing advances, MD simulations will continue to provide important insights into GPCR signaling mechanisms and further facilitate structure-based drug design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.