Abstract

The G protein-coupled receptor 65 (GPR65) gene has been genetically associated with several autoimmune diseases, including multiple sclerosis (MS). GPR65 is predominantly expressed in lymphoid organs and is activated by extracellular protons. In this study, we tested whether GPR65 plays a functional role in demyelinating autoimmune disease. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we found that Gpr65-deficient mice develop exacerbated disease. CD4+ helper T cells are key drivers of EAE pathogenesis, however, Gpr65 deficiency in these cells did not contribute to the observed exacerbated disease. Instead, Gpr65 expression levels were found to be highest on invariant natural killer T (iNKT) cells. EAE severity in Gpr65-deficient mice was normalized in the absence of iNKT cells (CD1d-deficient mice), suggesting that GPR65 signals in iNKT cells are important for suppressing autoimmune disease. These findings provide functional support for the genetic association of GPR65 with MS and demonstrate GPR65 signals suppress autoimmune activity in EAE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.