Abstract

The novel cannabinoid receptor GPR55 is expressed by rodent islets and it has been implicated in β-cell function in response to a range of ligands. This study evaluated the effects of GPR55 ligands on intracellular calcium ([Ca2+ ]i ) levels and insulin secretion from islets isolated from GPR55 knockout (GPR55 -/- ) mice, age-matched wildtype (WT) mice and human pancreas. GPR55 expression was determined by Western blotting and fluorescent immunohistochemistry. Changes in [Ca2+ ]i were measured by Fura-2 microfluorimetry. Dynamic insulin secretion was quantified by radioimmunoassay following perifusion of isolated islets. RhoA activity was monitored using a Rho binding domain pull down assay. Western blotting indicated that MIN6 β-cells, mouse and human islets express GPR55 and its localization on human β-cells was demonstrated by fluorescent immunohistochemistry. The pharmacological GPR55 agonist O-1602 (10 μM) significantly stimulated [Ca2+ ]i and insulin secretion from WT mouse islets and these stimulatory effects were abolished in islets isolated from GPR55 -/- mice. In contrast, while the putative endogenous GPR55 agonist lysophosphatidylinositol (LPI, 5 µM) and the GPR55 antagonist cannabidiol (CBD, 1 µM) also elevated [Ca2+ ]i and insulin secretion, these effects were sustained in islets from GPR55 -/- mice. Stimulatory effects of O-1602 on [Ca2+ ]i and insulin secretion were also observed in experiments using human islets, but O-1602 did not activate RhoA in MIN6 β-cells. Our results therefore suggest that GPR55 plays an important role in the regulation of mouse and human islet physiology, but LPI and CBD exert stimulatory effects on islet function by a GPR55-independent pathway(s).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call