Abstract

Pain transmission and processing in the nervous system are modulated by various biologically active substances, including lysophospholipids, through direct and indirect actions on the somatosensory pathway. Lysophosphatidylglucoside (LysoPtdGlc) was recently identified as a structurally unique lysophospholipid that exerts biological actions via the G protein-coupled receptor GPR55. Here, we demonstrated that GPR55-knockout (KO) mice show impaired induction of mechanical pain hypersensitivity in a model of spinal cord compression (SCC) without the same change in the models of peripheral tissue inflammation and peripheral nerve injury. Among these models, only SCC recruited peripheral inflammatory cells (neutrophils, monocytes/macrophages, and CD3+ T-cells) in the spinal dorsal horn (SDH), and GPR55-KO blunted these recruitments. Neutrophils were the first cells recruited to the SDH, and their depletion suppressed the induction of SCC-induced mechanical hypersensitivity and inflammatory responses in compressed SDH. Furthermore, we found that PtdGlc was present in the SDH and that intrathecal administration of an inhibitor of secretory phospholipase A2 (an enzyme required for producing LysoPtdGlc from PtdGlc) reduced neutrophil recruitment to compressed SDH and suppressed pain induction. Finally, by screening compounds from a chemical library, we identified auranofin as a clinically used drug with an inhibitory effect on mouse and human GPR55. Systemically administered auranofin to mice with SCC effectively suppressed spinal neutrophil infiltration and pain hypersensitivity. These results suggest that GPR55 signaling contributes to the induction of inflammatory responses and chronic pain after SCC via the recruitment of neutrophils and may provide a new target for reducing pain induction after spinal cord compression, such as spinal canal stenosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.