Abstract

How cells monitor the availability of nutrition and transduce signals is a fundamental, unanswered question. We have found that Gpr1p, a recently identified G-protein (Gpa2p) coupled receptor in yeastSaccharomyces cerevisiae,regulate the cellular cAMP level in response to glucose. The glucose-induced higher cAMP level found in the strain withGPA2in multicopy plasmid decreased by deletion ofGPR1gene. A transient increase of cAMP in response to glucose was not observed in a Δgpr1mutant strain and this defect was complemented and restored by introducingGPR1gene with YCp vector. Gpr1p was also required for the increase of cAMP in response to other fermentable sugars. Both membrane proximal regions o the third cytosolic loop in Gpr1p, which has been shown to be important for coupling to G-proteins, were also required for glucose-induced transient increase of cAMP. Our findings suggest that Gpr1p is part of the nutrition sensing machinery most likely acting as a receptor to monitor glucose as well as other fermentable sugars and regulate cellular cAMP levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.