Abstract

Dietary fibers can alter gut microbiota and microbial metabolite profiles. SCFAs are produced by bacterial fermentation of fiber, mediating immune homeostasis through G-protein-coupled receptors (GPCRs). GPR109a, a receptor for niacin and butyrate, expressed by immune cells and non-immune cells, is a key factor regulating immune responses. However, the role and underlying mechanisms of GPR109a in type 1 diabetes (T1D) remain unclear. Experimental T1D was induced by streptozotocin in GPR109a-deficient (Gpr109a-/- ) and wild type mice. The study found that Gpr109a-/- mice were more susceptible to T1D with dysregulated immune responses, along with increased M1 macrophage polarization (from 10.55% to 21.48%). Further, an adoptive transfer experiment demonstrated that GPR109a-deficient macrophages promoted the homing of intestine-derived type 1 cytotoxic Tcells to pancreas (from 18.91% to 24.24%), thus disturbing the pancreatic immune homeostasis in non-obese diabetic mice. Mechanistically, GPR109a deficiency promoted M1 macrophage polarization associated with the activation of suppressor of cytokine signaling 3-signal transducer and activator of transcription 1 signaling pathway. The findings reveal that macrophage GPR109a deficiency accelerates the development of T1D. Activation of GPR109a on macrophage by dietary components may provide a new strategy for preventing or treating T1D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.