Abstract

Dynamic Voltage and Frequency Scaling (DVFS) on Graphics Processing Units (GPUs) components is one of the most promising power management strategies, due to its potential for significant power and energy savings. However, there is still a lack of simple and reliable models for the estimation of the GPU power consumption under a set of different voltage and frequency levels. Accordingly, a novel GPU power estimation model with both core and memory frequency scaling is herein proposed. This model combines information from both the GPU architecture and the executing GPU application and also takes into account the non-linear changes in the GPU voltage when the core and memory frequencies are scaled. The model parameters are estimated using a collection of 83 microbenchmarks carefully crafted to stress the main GPU components. Based on the hardware performance events gathered during the execution of GPU applications on a single frequency configuration, the proposed model allows to predict the power consumption of the application over a wide range of frequency configurations, as well as to decompose the contribution of different parts of the GPU pipeline to the overall power consumption. Validated on 3 GPU devices from the most recent NVIDIA microarchitectures (Pascal, Maxwell and Kepler), by using a collection of 26 standard benchmarks, the proposed model is able to achieve accurate results (7%, 6% and 12% mean absolute error) for the target GPUs (Titan Xp, GTX Titan X and Tesla K40c).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call