Abstract

Currently, there are no conventional treatments for stress-induced cardiomyopathy (SCM, also known as Takotsubo syndrome), and the existing therapies are not effective. The recently discovered G protein-coupled estrogen receptor (GPER) executes the rapid effects of estrogen (E2). In this study, we investigated the effects and mechanism of GPER on epinephrine (Epi)-induced cardiac stress. SCM was developed with a high dose of Epi in adult rats and human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs). (1) GPER activation with agonist G1/E2 prevented an increase in left ventricular internal diameter at end-systole, the decrease both in ejection fraction and cardiomyocyte shortening amplitude elicited by Epi. (2) G1/E2 mitigated heart injury induced by Epi, as revealed by reduced plasma brain natriuretic peptide and lactate dehydrogenase release into culture supernatant. (3) G1/E2 prevented the raised phosphorylation and internalization of β2-adrenergic receptors (β2AR). (4) Blocking Gαi abolished the cardiomyocyte contractile inhibition by Epi. G1/E2 downregulated Gαi activity of cardiomyocytes and further upregulated cAMP concentration in culture supernatant treated with Epi. (5) G1/E2 rescued decreased Ca2+ amplitude and Ca2+ channel current (ICa-L) in rat cardiomyocytes. Notably, the above effects of E2 were blocked by the GPER antagonist, G15. In hiPSC-CM (which expressed GPER, β1AR and β2ARs), knockdown of GPER by siRNA abolished E2 effects on increasing ICa-L and action potential duration in the stress state. In conclusion, GPER played a protective role against SCM. Mechanistically, this effect was mediated by balancing the coupling of β2AR to the Gαs and Gαi signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call