Abstract
The function of G protein-coupled receptors (GPCRs)-which represent the largest class of both human membrane proteins and drug targets-depends critically on their ability to change shape, transitioning among distinct conformations. Determining the structural dynamics of GPCRs is thus essential both for understanding the physiology of these receptors and for the rational design of GPCR-targeted drugs. Here we review what is currently known about the flexibility and dynamics of GPCRs, as determined through crystallography, spectroscopy, and computer simulations. We first provide an overview of the types of motion exhibited by a GPCR and then discuss GPCR dynamics in the context of ligand binding, activation, allosteric modulation, and biased signaling. Finally, we discuss the implications of GPCR conformational plasticity for drug design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.