Abstract

Parkinson’s disease (PD) exhibits systemic impacts on the metabolism, while metabolic alteration contributes to the risk and progression of PD. Bile acids (BA) metabolism disturbance has been linked to PD pathology. Membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1) is expressed in the brain and thought to be neuroprotective; however, the role of GPBAR1 in PD remains unknown. The current study aimed to explore the effect of GPBAR1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice with dopaminergic (DA) neuron-specific Gpbar1 knockdown or central GPBAR1 activation. The underlying mechanisms were investigated using mesencephalic primary neurons analyzed. Our study found that GPBAR1 was reduced in the substantia nigra of PD patients and MPTP-PD mice, and its expression was negatively correlated with the severity of PD-related features. Genetic downregulation of Gpbar1 in mouse mesencephalic DA neurons exacerbated MPTP-induced neurobehavioral and neuropathological deficits, whereas activation of central GPBAR1 with INT-777 (INT) relieved it. Moreover, in vivo and in vitro experiments showed the neurite- and synapse-protective effects of GPBAR1 activation in PD model. Mechanistically, by promoting the nuclear localization of cohesin subunit RAD21, GPBAR1 activation increased opioid-binding cell adhesion molecule (Opcml) expression, thereby inhibiting neurite and synapse degeneration of DA neurons in PD model. Collectively, our findings demonstrate that GPBAR1 is implicated in PD pathogenesis and activation of central GPBAR1 with INT antagonizes neurodegenerative pathology in PD model. This neuroprotection, at least in part, is attributed to the RAD21-OPCML signaling in neurons. Hence, GPBAR1 may serve as a promising candidate target for PD treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.