Abstract

This paper investigates use of genetic programming regression models to forecast home values. Neighborhood prices in a city are represented by a quarterly index. Index values are ratios of each local neighborhood to the global city average real price of homes sold. Relative average neighborhood home attributes, local socioeconomic characteristics, spatial measures, and real mortgage rates explain spatiotemporal variations in the index. To examine efficacy of model estimation, forecasts obtained using genetic programming are compared with those obtained using generalized least squares. Out-of-sample genetic programming predictions of home prices obtained using spatial index models deliver reasonable forecasts of home prices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.