Abstract

The integration of non-dispatchable generation has led to a change in the dynamics of primary frequency response. This change, mostly driven by the limited contribution of non-dispatchable generation to both total system inertia and governor response, may deteriorate the performance of current practices for determining primary reserves to the extend that real time operation reliability may no longer be ensured. This work establishes sufficient conditions for ensuring primary response adequacy through ex-ante dispatch instructions. A simplified dynamic model of primary frequency response (including system inertia, system governors' ramp rates, and dead bands) is developed to formulate a constraint suitable for an OPF framework. A simulation of ERCOT is presented to test the proposed formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.